Skip to main content
Log in

Source components of the Gran Canaria (Canary Islands) shield stage magmas: evidence from olivine composition and Sr–Nd–Pb isotopes

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Canary Island primitive basaltic magmas are thought to be derived from an HIMU-type upwelling mantle containing isotopically depleted (NMORB)-type component having interacted with an enriched (EM)-type component, the origin of which is still a subject of debate. We studied the relationships between Ni, Mn and Ca concentrations in olivine phenocrysts (85.6–90.0 mol.% Fo, 1,722–3,915 ppm Ni, 1,085–1,552 ppm Mn, 1,222–3,002 ppm Ca) from the most primitive subaerial and ODP Leg 157 high-silica (picritic to olivine basaltic) lavas with their bulk rock Sr–Nd–Pb isotope compositions (87Sr/86Sr = 0.70315–0.70331, 143Nd/144Nd = 0.51288–0.51292, 206Pb/204Pb = 19.55–19.93, 207Pb/204Pb = 15.60–15.63, 208Pb/204Pb = 39.31–39.69). Our data point toward the presence of both a peridotitic and a pyroxenitic component in the magma source. Using the model (Sobolev et al. in: Science 316:412–417, 2007) in which the reaction of Si-rich melts originated during partial melting of eclogite (a high pressure product of subducted oceanic crust) with ambient peridotitic mantle forms olivine-free reaction pyroxenite, we obtain an end member composition for peridotite with 87Sr/86Sr = 0.70337, 143Nd/144Nd = 0.51291, 206Pb/204Pb = 19.36, 207Pb/204Pb = 15.61 and 208Pb/204Pb = 39.07 (EM-type end member), and pyroxenite with 87Sr/86Sr = 0.70309, 143Nd/144Nd = 0.51289, 206Pb/204Pb = 20.03, 207Pb/204Pb = 15.62 and 208Pb/204Pb = 39.84 (HIMU-type end member). Mixing of melts from these end members in proportions ranging from 70% peridotite and 30% pyroxenite to 28% peridotite and 72% pyroxenite derived melt fractions can generate the compositions of the most primitive Gran Canaria shield stage lavas. Combining our results with those from the low-silica rocks from the western Canary Islands (Gurenko et al. EPSL 277:514–524, 2009), at least four distinct components are required. We propose that they are (1) HIMU-type pyroxenitic component (representing recycled ocean crust of intermediate age) from the plume center, (2) HIMU-type peridotitic component (ancient recycled ocean crust stirred into the ambient mantle) from the plume margin, (3) depleted, MORB-type pyroxenitic component (young recycled oceanic crust) in the upper mantle entrained by the plume, and (4) EM-type peridotitic component from the asthenosphere or lithosphere above the plume center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abratis M, Schmincke H-U, Hansteen TH (2002) Composition and evolution of submarine volcanic rocks from the central and western Canary Islands. Int J Earth Sci 91:562–582

    Article  Google Scholar 

  • Baker J, Peate D, Waight T, Meyzen C (2004) Pb isotopic analysis of standards and samples using a 207Pb-204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS. Chem Geol 211:275–303

    Article  Google Scholar 

  • Chauvel C, Hofmann AW, Vidal P (1992) HIMU-EM, the French Polynesian connection. Earth Planet Sci Lett 110:99–119

    Article  Google Scholar 

  • Class C, le Roex AP (2006) Continental material in the shallow oceanic mantle—how does it get there? Geology 34:129–132

    Google Scholar 

  • Cousens BL, Spera FJ, Tilton GR (1990) Isotopic patterns in silicic ignimbrites and lava flows of the Mogan and lower Fataga Formations, Gran Canaria, Canary Islands: temporal changes in mantle source composition. Earth Planet Sci Lett 96:319–335

    Article  Google Scholar 

  • Demény A, Vennemann TW, Hegner E, Ahijado A, Casillas R, Nagy G, Homonnay Z, Gutierrez M, Szabó Cs (2004) H, O, Sr, Nd, and Pb isotopic evidence for recycled oceanic crust in the Transitional Volcanic Group of Fuerteventura, Canary Islands, Spain. Chem Geol 205:37–54

  • Dosso L, Hanan BB, Bougault H, Schilling J-G, Joron J-L (1991) Sr–Nd–Pb geochemical morphology between 10° and 17°N on the Mid-Atlantic Ridge: a new MORB isotope signature. Earth Planet Sci Lett 106:29–43

    Article  Google Scholar 

  • Doucelance R, Escrig S, Moreira M, Gariepy C, Kurz MD (2003) Pb–Sr–He isotope and trace element geochemistry of the Cape Verde Archipelago. Geochim Cosmochim Acta 67:3717–3733

    Article  Google Scholar 

  • Duggen S, Hoernle K, Klügel A, Geldmacher J, Thirlwall M, Hauff F, Lowry D, Oates N (2008) Geochemical zonation of the Miocene Alborán Basin volcanism (westernmost Mediterranean): geodynamic implications. Contrib Miner Petrol 156:577–593

    Article  Google Scholar 

  • Duggen S, Hoernle KA, Hauff F, Klügel A, Bouabdellah M, Thirlwall MF (2009) Flow of Canary mantle plume material through a subcontinental lithospheric corridor beneath Africa to the Mediterranean. Geology 37:283–286

    Article  Google Scholar 

  • Escrig S, Doucelance R, Moreira M, Allegre CJ (2005) Os isotope systematics in Fogo Island: evidence for lower continental crust fragments under the Cape Verde Southern Islands. Chem Geol 219:93–113

    Article  Google Scholar 

  • Fúster JM, Araña V, Brändle JL, Navarro JM, Alonso U, Aparicio A (1968) Tenerife. In: Geologa y Volcanologa de las Islas Canarias, Volcanol. Inst Lucas Mallada, Madrid, Int Symp, Spec Publ, 218 p

  • Galer SJG, Abouchami W (1998) Practical application of lead triple spiking triple spiking for correction of instrumental mass discrimination. Miner Mag 62A:491–492

    Article  Google Scholar 

  • Geldmacher J, Hoernle K (2000) The 72 Ma geochemical evolution of the Madeira hotspot (eastern North Atlantic): recycling of Palaeozoic (≤500 Ma) basaltic and gabbroic crust. Earth Planet Sci Lett 183:73–92 (Corrigendum in Geldmacher J, Hoernle K (2001) Earth Planet Sci Lett 186: 333)

    Article  Google Scholar 

  • Geldmacher J, Hoernle K, van den Bogaard P, Zankl G, Garbe-Schönberg D (2001) Earlier history of the 70-Ma-old Canary hotspot based on the temporal and geochemical evolution of the Selvagen Archipelago and neighboring seamounts in the eastern North Atlantic. J Volcanol Geotherm Res 111:55–87

    Article  Google Scholar 

  • Geldmacher J, Hoernle K, van den Bogaard P, Duggen S, Werner R (2005) New 40Ar/39Ar age and geochemical data from seamounts in the Canary and Madeira volcanic province: support for the mantle plume hypothesis. Earth Planet Sci Lett 237:85–101

    Article  Google Scholar 

  • Geldmacher J, Hoernle K, Klügel A, Pvd Bogaard, Bindeman I (2008) Geochemistry of a new enriched mantle type locality in the northern hemisphere: implications for the origin of the EM-I source. Earth Planet Sci Lett 265:167–182

    Article  Google Scholar 

  • Gerlach DC, Cliff RA, Davies GR, Norry MJ, Hodgson NR (1988) Magma sources of the Cape Verde archipelago: isotopic and trace element constraints. Geochim Cosmochim Acta 52:2979–2993

    Article  Google Scholar 

  • Gurenko AA, Hansteen TH, Schmincke H-U (1998) Melt, crystal, and fluid inclusions in olivine and clinopyroxene phenocrysts from the submarine shield stage hyaloclastites of Gran Canaria, Sites 953 and 956. In: Weaver PPE, Schmincke H-U, Firth JV, Duffield W (eds) Proc ODP Sci Res Ocean Drilling Program, vol 157. College Station, pp 375–401

  • Gurenko AA, Hoernle KA, Hauff F, Schmincke H-U, Han D, Miura YN, Kaneoka I (2006) Major, trace element and Nd–Sr–Pb–O–He–Ar isotope signatures of shield stage lavas from the central and western Canary Islands: insights into mantle and crustal processes. Chem Geol 233:75–112

    Article  Google Scholar 

  • Gurenko AA, Sobolev AV, Hoernle K, Hauff F, Schmincke H-U (2009) Enriched, HIMU-type peridotite and depleted recycled pyroxenite in the Canary plume: a mixed-up mantle. Earth Planet Sci Lett 277:514–524

    Article  Google Scholar 

  • Halliday AN, Lee D-C, Tommasini S, Davies GR, Paslick CR, Fitton JG, James DE (1995) Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. Earth Planet Sci Lett 133:379–395

    Article  Google Scholar 

  • Hanan BB, Blichert-Toft J, Pyle DG, Christie DM (2004) Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge. Nature 432:91–94

    Article  Google Scholar 

  • Hart SR (1984) A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309:753–757

    Article  Google Scholar 

  • Hart SR, Gerlach DC, White WM (1986) A possible new Sr–Nd–Pb mantle array and consequences for mantle mixing. Geochim Cosmochim Acta 50:1551–1557

    Article  Google Scholar 

  • Hawkesworth CJ, Mantovani MSM, Taylor PN, Palacz Z (1986) Evidence from the Parana of south Brazil for a continental contribution to Dupal basalts. Nature 322:356–359

    Article  Google Scholar 

  • Hernandez-Pacheco A (1971) Nota previa sobre el complejo basal de la isla de La Palma (Canarias). Estudios Geol 27:255–265

    Google Scholar 

  • Hoernle K (1998) Geochemistry of Jurassic oceanic crust beneath Gran Canaria (Canary Islands): implications for crustal recycling and assimilation. J Petrol 39:859–880

    Article  Google Scholar 

  • Hoernle K, Schmincke H-U (1993a) The petrology of the tholeiites through melilite nephelinites on Gran Canaria, Canary Islands: crystal fractionation, accumulation, and depths of melting. J Petrol 34:573–597

    Google Scholar 

  • Hoernle K, Schmincke H-U (1993b) The role of partial melting in the 15 Ma geochemical evolution of Gran Canaria: a blob model for the Canary hotspot. J Petrol 34:599–626

    Google Scholar 

  • Hoernle K, Tilton GR (1991) Sr–Nd–Pb isotope data for Fuerteventura (Canary Islands) basal complex and subaerial volcanics: application to magma genesis and evolution. Schweiz Min Petrol Mitt 71:5–21

    Google Scholar 

  • Hoernle K, Tilton G, Schmincke H-U (1991) Sr–Nd–Pb isotopic evolution of Gran Canaria: evidence for shallow enriched mantle beneath the Canary Islands. Earth Planet Sci Lett 106:44–63

    Article  Google Scholar 

  • Hoernle K, Zhang Y-S, Graham D (1995) Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe. Nature 374:34–39

    Article  Google Scholar 

  • Hoernle K, Tilton G, Le Bas MJ, Duggen S, Garbe-Schönberg D (2002) Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contrib Miner Petrol 142:520–542

    Google Scholar 

  • Hoernle K, Abt DL, Fischer KM, Nichols H, Hauff F, Abers GA, van den Bogaard P, Heydolph K, Alvarado G, Protti M, Strauch W (2008) Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. Nature 451:1094–1097

    Article  Google Scholar 

  • Ibarrola E (1970) Variation trends in basaltic rocks of the Canary islands. Bull Volcanol 33:729–777

    Article  Google Scholar 

  • Ito E, White WM, Göpel C (1987) The O, Sr, Nd and Pb isotope geochemistry of MORB. Chem Geol 62:157–176

    Article  Google Scholar 

  • Jarosewich EJ, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analyses. Geostand Newslett 4:43–47

    Article  Google Scholar 

  • Kamenetsky VS, Eggins SM, Crawford AJ, Green DH, Gasparon M, Falloon TJ (1998) Calcic melt inclusions in primitive olivine at 43°N MAR: evidence for melt–rock reaction/melting involving clinopyroxene-rich lithologies during MORB generation. Earth Planet Sci Lett 160:115–132

    Article  Google Scholar 

  • Kurz MD, le Roex AP, Dick HJB (1998) Isotope geochemistry of the oceanic mantle near the Bouvet triple junction. Geochim Cosmochim Acta 62:841–852

    Article  Google Scholar 

  • Lundstrom CC, Hoernle K, Gill J (2003) U-series disequilibria in volcanic rocks from the Canary Islands: plume versus lithospheric melting. Geochim Cosmochim Acta 67:4153–4177

    Article  Google Scholar 

  • Lustrino M (2005) How the delamination and detachment of lower crust can influence basaltic magmatism. Earth Sci Rev 72:21–38

    Article  Google Scholar 

  • Marcantonio F, Zindler A, Elliott T, Staudigel H (1995) Os isotope systematics of La Palma, Canary Islands; evidence for recycled crust in the mantle source of HIMU ocean islands. Earth Planet Sci Lett 133:397–410

    Article  Google Scholar 

  • Schmincke H-U (1976) Geology of the Canary Islands. In: Kunkel G (ed) Biogeography and ecology of the Canary Islands. Junk, the Hague, pp 67–184

    Google Scholar 

  • Schmincke H-U (1982) Volcanic and chemical evolution of the Canary Islands. In: von Rad U, Hinz K, Sarnthein M, Seibold E (eds) Geology of the Northwest African Continental Margin. Springer, pp 273–306

  • Schmincke H-U, Segschneider B (1998) Shallow submarine to emergent basaltic shield volcanism of Gran Canaria: Evidence from drilling into the volcanic apron. In: Weaver PPE, Schmincke H-U, Firth JV, Duffield W (eds) Proc ODP Sci Res Ocean Drilling Program, vol 157. College Station, pp 141–181

  • Shipboard Scientific Party (1995) Site 953. In: Schmincke H-U, Weaver PPE, Firth JV et al (eds) Proc ODP, Init Repts, vol 157. College Station, (Ocean Drilling Program), pp 317–394

  • Simonsen SL, Neumann E-R, Seim K (2000) Sr–Nd–Pb isotope and trace-element geochemistry evidence for a young HIMU source and assimilation at Tenerife (Canary Island). J Volcanol Geotherm Res 103:299–312

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung S-L, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Brügmann B, Batanova VG, Kuzmin DV (2008) A quantitative link between recycling and osmium isotopes. Science 321:536

    Article  Google Scholar 

  • Sun SS (1980) Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. In: Bailey K, Tarney J, Dunham K (eds) The Evidence for chemical heterogeneity in the Earth’s mantle. Royal Society of London, pp 409–445

  • Taylor JR (1982) An introduction to error analysis. Oxford Univ Press, Oxford

    Google Scholar 

  • Thirlwall MF (1997) Pb isotopic and elemental evidence for OIB derivation from young HIMU mantle. Chem Geol 139:51–74

    Article  Google Scholar 

  • Thirlwall MF (2000) Inter-laboratory and other errors in Pb isotope analyses investigated using a 207Pb–204Pb double spike. Chem Geol 163:299–322

    Article  Google Scholar 

  • Thirlwall MF (2002) Multicollector ICP-MS analysis of Pb isotopes using a 207Pb–204Pb double spike demonstrates up to 400 ppm/amu systematic errors in Tl-normalization. Chem Geol 184:255–279

    Article  Google Scholar 

  • Thirlwall MF, Jenkins C, Vroon PZ, Mattey DP (1997) Crustal interaction during construction of oceanic islands: Pb–Sr–Nd–O isotope geochemistry of the shield basalts of Gran Canaria, Canary Islands. Chem Geol 135:233–262

    Article  Google Scholar 

  • Timm C, Hoernle K, van den Bogaard P, Bindeman I, Weaver S (2009) Geochemical evolution of intraplate volcanism at Banks Peninsula, New Zealand: interaction between asthenospheric and lithospheric melts. J Petrol 50:989–1023

    Article  Google Scholar 

  • Todt W, Cliff RA, Hanser A, Hofmann AW (1996) Evaluation of a 202Pb-205Pb double spike for high precision lead isotope analyses. In: Basu A, Hartm S (eds) Earth processes: reading the isotope code. Geophys Monograph, vol 95, Am Geophys Union, pp 429–437

  • Widom E, Carlson RW, Gill JB, Schmincke H-U (1997) Th–Sr–Nd–Pb isotope and trace element evidence for the origin of the São Miguel, Azores, enriched mantle source. Chem Geol 140:49–68

    Article  Google Scholar 

  • Widom E, Hoernle KA, Shirey SB, Schmincke H-U (1999) Os isotope systematics in the Canary Islands and Madeira: lithospheric contamination and mantle plume signatures. J Petrol 40:297–314

    Article  Google Scholar 

  • Zindler A, Hart S (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14:493–571

    Article  Google Scholar 

Download references

Acknowledgments

We thank S. Hauff for assistance in carrying out Sr–Nd–Pb isotope analyses and the Ocean Drilling Program for providing HUS and AAG with the samples drilled during the ODP Leg 157. The Museum of Natural History, Washington DC kindly provided us with standards for electron microprobe analysis. Thorough reviews by Andreas Klügel, Christian Tegner and one anonymous referee helped us to improve the manuscript substantially and are gratefully acknowledged. This work was supported by the Wolfgang Paul Award of the Alexander von Humboldt Foundation (to AVS), the Max Planck Society, DFG grants SCHM 250/64, 82-1 and HA3097/2 (to HUS, KH and FH), the Russian Basic Research Foundation (grant 06-05-65234 to AVS) and the Russian Academy of Sciences. Editorial handling of the manuscript by Jochen Hoefs is very much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Gurenko.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 311 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurenko, A.A., Hoernle, K.A., Sobolev, A.V. et al. Source components of the Gran Canaria (Canary Islands) shield stage magmas: evidence from olivine composition and Sr–Nd–Pb isotopes. Contrib Mineral Petrol 159, 689–702 (2010). https://doi.org/10.1007/s00410-009-0448-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0448-8

Keywords

Navigation